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1. INTRODUCTION

Let L,]0, 1] be the space of real-valued Lebesgue integrable functions on
[0, 1] with norm || f||, = [} |f(x)idx; C|0.1}<L,|0,1] the subspace of
continuous functions; U, = C|0, 1| an n-dimensional Haar subspace.

By the classical theorem of Jackson |3], for any f& C|0, 1] there exists a
unique polynomial p,(f) € U, such that

1/ =2 = inf /=g, (1)

In what follows, p,(f) will always denote the best L,-approximation to
fEC|0,1].

The usual approach to the L -approximation problem consists in replacing
in (1) the L,-norm by a discrete L -norm.

Let 0=x, <x, < <x,<x,. ,=1be adiscrete set of points on [0. 1]
AxX; = X;,, — X;y XxF=(x;+x,,)/2, i =0, N (here and throughout the paper

we use the abbreviation n,m= {n,n + I... m— l.m}), d = max,_,. ,4x,.
Then we can define the discrete L,-norm by

0= N 1) Ax, (2)

in
and look for solutions of the L,-approximation problem for this (semi)norm:

=P sllis = qigf, 1f=aulli.s- (3)

The best discrete L,-approximation p,(f ), is not unique in general. We shall

denote by Y,(f), the set of polynomials p,(f), satisfying (3). A detailed

discussion of best discrete L -approximation can be found in Rice {8] and
340
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BEST L -APPROXIMATION 341

Rivlin [9]. In [9] it is shown that the solution of (3) can be obtained as a
solution of a linear programming problem.

It is natural to expect that for f€ C[0, 1] all p,(f), tend to p,(f) as
60— 0, ie.,

sup [ p,(f) =P )sllc=0  (6-0),

Dl fY€EY 4

where || - || is the supremum norm. This result was first proved by Motzkin
and Walsh |6]. (It also follows from a general theorem of Kripke [4].)

In the present paper we shall be interested in the rate of convergence of
p.(f)s to p,(f) as 6~ 0. This problem was attacked by Usow |10]. Set
Lipya = {f€ C[0, 1]: w(h) < MR}, where w (h)=sup . . .,IAx)—
S M>0,0<ag1; and let {p,}7 | be a basis in U,. Usow |10] has
shown that if f/ and ¢, (1 i< n) belong to Lip,, | and the set of zeros of
f—p,(f) is of measure zero and contains at least » isolated points. then

sup || pu(f) — Pulf)sllc = OG/3). (4)

PtV 4€Y n()y

where the constant in O depends only on f and U,,.
The question of sharpness of the estimation (4) remained open.
Our principal result is that for a wide class of functions

sup {1 p,(f) = (S sllc = Olw,(0)) (5)

Pl sEY (g

and this rate of convergence is the best possible in general. Evidently, (5) is a
strong improvement of (4). (It is interesting to observe that the rate of
convergence in discretization of Cebysev approximation is also w,(J) (see
|1.p.92}).)

2. NEw RESULTS

In what follows {¢,}7.; will always be a basis in U, and we assume that

¢, =1 and ¢, € Lip,,. 1 (2 i< n) for some M* > 0.
We start with a generalization of Usow’s theorem.

Tueorem 1. [If f€ Lip,,a and 0 < < ¢ {a, M. U,), then

sup | () = PalPslle S exla ML U, ) 6270, (6)

Palf)s€Y (g

where the constants c(a, M, U,) (j= 1, 2) depend only on a, M and U,,.
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Theorem 1 is a generalization of Usow's result because it does not impose
any restriction on the set of zeros of f— p,(f) and estimation (6) is uniform
on the class of functions Lip,, ¢. But from the point of view of the rate of
convergence it does not improve (4), because the proof of Theorem | goes
essentially along the same lines as that of (4).

Our main result is the following

THEOREM 2. Let f€ C|0, 1| and ¢; (1 <i< n) be twice continuously
differentiable. If f—p,(f) has a finite number of zeros and & is small
enough. then

Sup “pn(.f)7Pn(/‘)b“(‘gcl(‘/: brn)(uf(é‘)' (7)

Palf) €Y, (s

where the constant ¢,(f. U,) depends only on f and U,. Moreoter estimation
(7) cannot be improved in general.

Remark 1. The condition f€ Lip,, ¢ is not essential in Theorem 1. An
estimation for the rate of convergence also can be given in case f&€ C|0. 1].
But in the general case, the order of convergence cannot be obtained
explicitly: it will depend on w;,.

Remark 2. In general the discrete L ,-norm of [/ can be defined by
N oA Ax,, where &, € |x,. x;, ) are arbitrary fixed points. In particular
Usow considered the case &;=x; but his proof still goes for any ¢,.
Theorem | remains also true when ¢, are arbitrary, but in the proof of
Theorem 2 the choice of &, to be the middle point of the interval |x,.x; | is

essential.

Remark 3. The proof of Theorem | is based on a standard method.
applying a strong unicity type result. This method was used by Cheney (|1.
p. 92|) in the case of Cebysev approximation, by Peetre |7] for L,
approximation (1 < p< o) and by Usow [10] for L, -approximation. In
contrast with L -approximation. this standard method gives sharp
estimations in discretization of Cebysev approximation. The proof of
Theorem 2 which gives already the best possible estimation for the rate of
convergence of discrete L -approximation is based on more delicate
considerations connected with specific features of approximation in L -norm.

3. PrRoOOF oF THEOREM 1

We shall need some simple propositions. In what follows ¢;(---) will
denote constants depending only on quantities specified in the brackets.
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ProposITION 1. For any q,€ U, and 0 < h< 1

(h) c4(Un anH h (8)
where we may assume that c,(U,) >

Proof. Using that ¢, € Lip,,. 1 (1 </< n) and the equivalence of norms
in finite-dimensional spaces we have for g,=2 1 ,a;0;

"

w, (M) < Y aj] o, W< Mh 2 \ \al (U gl A
i 1 i

ProrosiTiON 2. Forany q,€ U, and 0 <5< t/e,(U,)

an”l ~= “qn“l,b’ (9)
1gull.s <3

Proof. Obviously, for any /€ C|0, 1|

HIA =10 s] € @A6/2). (11)
Hence and by (8), we have

5\ cy(U) q,
e ~ladisl <oq (5) <252 g, < 120

This immediately implies (9) and (10).

ProposiTioN 3. Let f& C|0, 1],

DA )s €Y (f)s, where 0<K
l/e,(U,). Then for any 0 < h <1

W, nh) <es(U,) w (h), (12)
W,y (M) < eo(U,,) w,(h). (13)

Proof. Set f(x)=f(x)—f(0). Evidently p,(f)=p.(/) =S ©O), p.(f)s—
f(O)_p,,(f)SE Y (f)(S Therefore by (8), we have w, (h)=w, (k)<

U PNl b < 2e,(U) 1k < 26U 1 llc b < 2e4U,) wo(Dh <

de(U,) wy(h) (here we used the inequality w,(1)k < 2w, (h)). Further by (8),
(9) and (11), we obtain

Wy )= w, 7y (B (U | P (sl B
L2 (U Pl )sllis < de (U 5 A
LA (U + wp(6) A
< Bey(U,) w ()h < 16cy(U,) wilh)

640,/33/4-5
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ProposITION 4. Let f€ C|O, 1|, p(f)s € Y, (f)s. where 0 <0<
1/c,(U,). Then
1= sl IS = 2D+ €U, w,06). (14)

Proof. Equation (11) and Proposition 3 imply

1S = sl SIS = Pul sl s + 0A0) + w4, (0)
SIS = PN s + (4 e (U))) ©,(0)
<= paNL HU(K))+(:)M,, (0) + (1 + ¢ (U,)) w,(5)
SN =P+ 3 (U) 0, (0).
The following strong unicity type theorem is proved in |5, Theorem 2|:
Let f*€ Cl0, 1], p(/*)=0 and w,.(h) < w(h), where w(h) is a fixed
modulus of continuity. Then
suptlig,ll: g, € Uy [/ =g, < I/7 L+ 260
cylw, U (€). (15)

where [, (¢) is the inverse of S(e)=1¢ " (¢c—w(t))d and £ >0 is an
arbitrary real for which /_(¢) is defined, i.e.. 0 < & < [} (w(1) — w(1)) dt.

FOI' fE Lip.‘\t o set f* :f',, pn(j‘): qn :pn(f)b —pn(j‘)‘ Where pn(j‘)h EE
Y.(f)s and 0<d< /e U,) Then p,(f*)=0 and by (12). w, (h)<
co(M, U,)h*.  Setting  w(h)=c,M.U,)h" we obtain [ ()=
crola M, Uy e V. Further by (14)

‘;’./.* - qn“l o ”f)‘l = !‘/7 pn(f Hl - ‘ pn(/ ‘
< Mes(U,) 67

Hence and by (15) for any 0 < < ¢, (e, M. U,)

“ pn(‘/‘) - pn(.f ”( Ll’ bn) ”pn(./ pn ./ )(S‘Hl
- CIZ(L’H) ”qn([l g C”(C(, M’ Ijn,) (501’(” ’ “'

Theorem 1 is proved.

4. PROOF OF THEOREM 2

We start with verifying the upper bound of Theorem 2.
Evidently we may assume that p,(f) = 0 and f has finite number of zeros.
Let 0 <t < - <t,<1 be all the zeros of f inside (0,1). Set 7,=0.
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lw.1=1(t, and 1, , may also be zeros of /) and r=min,_,_,, (t;,, — ;).
Throughout the rest of the proof we assume that é < min{t/4, 1/c.(U,).
Forany k=0, m + 1 set

s
i,=0: i, = max %j:,yigtk—7z (k=1.m+ 1)

P —
5, =min 3j:x,2tk+—2~£ (k=0,m)s, ., =N+ 1L

Evidently,

) 30 —

7<h*\,k 5 (k=1Lm+1)

- . (16)

0 36

Tg.’(” & <7 (k=0,m)
hence x, < x; , (k=0,m)and

5 N

Tgx“—x,k<35 (k=0,m+1). (17)

Further by {117, and {x;}*}, we define a linear operator D acting from
C|[0, 1] into L |0, 1]. For g€ C[0, 1|

D(g)=g. XE [x;.x, | (k=0.m+ 1),

= g(x¥), XC[xx | (=0 Nsi# i s, — lik=0.m+ 1).

Obviously for any x € [0, 1|, we have

sign = sign D(f). (19)

We shall establish some properties of D.

ProposITION 5. Let g€ C|0, 1. 1 <k m. Then for any x € [0, 1]

ID(g.x)— gt ) < 2w,(x —1,]) (20)

Proof. Assume, e.g., that x >1,. Then for x € IIk x, |- D(g.x)=g(x):
thus (20) is evident. Further if x> x  then x€ [x,. x,. ,] for some » and
therefore D( g, x) is equal to g(x) or g(x*). Thus by (16)

D(g, x)— gt )l <lglx) — gt )l + 1 D( g, x) — gl(x)|
L x = 1,)+ w,(6/2)

Swx =)+ wle, 1) < 2wy — 1))
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For x < 1, the proof can be obtained analogously.

LEmmA 1. For any q,€ U, we have

ns

J D(q,) sign D(f) dx | < ¢y(U,) 14, 6° @0

Proof. By our assumption p,(f)=0 and f has a finite number of zeros.
Then, by a well-known theorem and (19), for any g, € U,

N .1
| q,sign D(f)dx= | q,sign fdx=0. (22)
70 40

Further again using (19) we have

mt -Xsg
| D(q,)sign D(f)dx= N\ | " g, signfdx
K=o " x;,

m fg-1-1
+ _\_ Yk \_ gq(x[) Ax;,
k-0 iosg

where y, = sign f while x € [x, , x,, | Thus by (22)

Uml

1, Dl sien D(r)

.1

| Dlg,)sign D(f)dx | q,sign D(/) dx

-0

I

m i1 L m i;“|‘ Ty ‘
= ‘\_ Yk }__, qn(xi*) Axi - \_ 7k ‘\_ . qy dx |
k-0 iy k=0 isY :
m Tha 1 R
< ,\_ _\_ qn(xi*)Axi - ‘ q, dx|. (23)
ko0 i—s, iy ‘

Hence, using the representation

X

4u(¥) = ,(x) + x5 ) + | (-0 g0 d

we obtain

RIES|
qn(xi* ) Axi - ‘

Y X

\ﬁ\ ;" (x —1) q!'(t) dt dx
[

R

i Y

LAxiligylle o (24)
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Set T=max, ., llo/llc. Then

LT 2_ la,| < e, (U) g,

C it

n
° "
,\_ a;9;

i1

la7llc=

This together with (23) and (24) imply (21).
CoroLLARY 1. For any q,€ U,. we have

D) = Dig, )l — 1D

>2[ D) - D(g,) dx —c,o(U,) 4, 6% (25)

SAq,)

where A(f;4,) = {x € [0, 1]:0 < D(f) < D(g,) or D(g,) < D(/) < O}.
Proof. By (21) we immediately obtain

ID(f)— D(g)l, = 1D,

B .‘: (D(f) — D(g,)) sign(D(f) — D(q,,)) — sign D(f)} dx
- .|: D(q,) sign D(f) dx

>2|  (D(f)—D(g,)l dx — c\o(U,) g, ]l 8

C4(f.q,
LEMMA 2. For any g € C[0, 1],
D — N gl 51 < ci2(f) S, (S). (26)

Proof. By simple calculations we get

ol =gl s

mil ok m -l N, ’

= _\__ ‘ | gl dx + ,\_ }__ Jg(xi*){dxi“.\_ | g(x/")| dx;
k=0 "x;, k=0 i=s, i=0
mtl R T

SN TS
k=0 i ig X

m+1

< wg(é) : (xxk - xik)'
k=0

Hence by (17) we obtain (26).
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COROLLARY 2. Let p(f)s € Y, (f)s. Then

-“-'H[' o )lD(f) _D(pn(j) Clx(f U )Ow/(()) (27)
Proof. By (9) and (11),
1 Pu s lle < uolUn) I Pl sl < 2610(U) | 2 Vs s

<
e (U
e (UL + o1)) = ea0(fL U

Therefore, according to (25). (26) and (13),

| D(f) = D(p,(f)s) dx

AL P () )

HIDU) = DN = DU+ c».(/i U,

=D =P, ()N, — DOt + e (S U,)

SHIS =2l sllhs — |\f|\1.5}+c,7(f)5wf(>
+4e5(f) dw, ) () + ey (S U,) &

< el fi U,) dw (5).

)

Thus estimation (27) is proved.

Now we are able to prove the upper bound of Theorem 2. We may assume
that w,(h) is strictly increasing for any 0 <A<, because w,(h)<
w (h) + h <A1+ 2/w 1)} wy(h), where w/ h)+h is already a strictly
increasing modulus of continuity. Let {7* }j’. , €(0,1) be the points of
change of sign of /. Evidently /> n. (Otherwise, by a well-known theorem,
there exists a ¢ € U,\0 with sign ¢ = sign /. which contradicts (22).)

Therefore for any g, € U,. we have

H qn“(\ < CZJ(’l]”) lm/a<x] lqn(t/*)‘ (’CZJ(LJN) > l ) (28)

Set 1§ =0, ¢, =1, F=ming;  max,_. .  [/(x), F>O0. Assume that J
is so small that ‘

sup | p,(f)slle <minf L, Fi. (29)

PallIAEY (S s

Take an arbitrary p,(/), € Y,(/),\0. According to (28) there exists a
¢ € (0. 1) such that f changes its sign at & (thus /(&) =0) and || p,,(/), | <
CZJ(Un) |pn(.f‘ é)bl
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Without loss of generality we may assume that p,(/; &), >0 and f(x) >0
while x € (& #»), where # is the next point where / changes its sign. By (20)

0<D(f)<2w,x—¢&),  xE (). (30)
Analogously by (20), (8) and (29), we obtain

D(pn(f)b) >pn(.f‘ é)b - 2wp,,(j‘)b(x - é)
= *-U— Hpn(f)él‘i(‘ - 2C4(Un) ”pn(f)é‘ll (X — é)

21

1(U ) Hpn(f)é C24(Un)(x - é)! X E (‘f* ’7) (3 1)

It follows from (29) that there exists ¥ & (&, #) such that

207~ 8= 5 Pl — eV O (32)
Further, (32) implies that
x2¢+ wfil(czs(f’ U, “Pn(f)&“f) =¢+ Wy l(2wf(h))’ (33)

where # is defined as solution of the equation

12, )sllc = @, (h). (34)

_ 2
es(SU,)
By (30), (31) and (32) we have for x € (¢, X)

D(p,(f)s)— D) 2 o =) —wlx=1 20. D(f)>0.

Hence applying (27) and (33) we have

CWlf: Up 3o 3) 2 [ 1D(p, (/) = DUt d

22| {0[F =) = w/lx — ) dx
cw; 2w h))

>2 . {2w,(h) — w (x)} dx

-0

N

> 2| {20,h) — 0 (x)} dx > 2w,(h) h.
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This immediately implies that % ¢ o(/; U,)0. Finally, substituting this
estimation in (34) we have

Hpn(f)é”( C’?(./ Uiz)w/( )

The upper bound of Theorem 2 is proved.

We shall give now a counterexample showing that estimation (7) is in
general the best possible.

Consider the system of functions {@,}! | spanning U,. By a theorem
proved in [2] there exist points 0=y, < ¥, <+ < ¥, <y,., =1 such that
forany 1 <j<n

N (=D pfx)dx =0. (35)

(=0 ¥
Let 0 <6 <ming ;i (yi,—r)/2 and set a; =y, —0/4, b=y, +35/4
(f=1,n). Evidently, we can choose the finite point set 0= x, < X < <
Xy <Xy, =1 in such way that {(x}¥'/M(a;.b,)=@ (i=1,n) and
max, ;v 4x; = . Let w be an arbitrary modulus of continuity and define f
by

) = (—1) wlx —v,)/2, x€ |, ’—gii] G=1n—1)
= (1) oy —x)2 xX€e ll[—tz‘)i Vi ] (i=1ln “Hl)
=w(y, —x)/2. XE | ye. 0k
= ()" wlx—y,)/2 X € {1 Vi)
Then ¢,z w(h) < w, (h) < w(h),
Sz o (D)2 we).  i=0N (36)
PRSI LIY SR
and by (35), p,(/)= 0. Let us prove that
0 ;
swp | p sl > (37)

Pl Y i f)s

Take an arbitrary p,(f); € Y, {/)s. We may assume that

wl(o
12l < 22 (38)
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(In the opposite case there is nothing to prove.) By the characterization
theorem of best discrete L -approximation (see |9, p. 74]), for any ¢, € U,

N
N g () Axsign{ f(xF) — pu(f x5} | < Y [g,06F) |4x;,
i=0 ief

(39)

where I ={i:f(x})=p,(f.x{);}. But by (36) and (38), I is empty and
sign {f(x*)—p,(f, xF)s} = sign f(x}) (i=0, N). Thus it follows from (39),
that for any g, € U,

N
N qu(x) Ax; sign f(xF) = 0. (40)

i-0

Set g, = p,(f)s + @(6)/32. Then by (38), ||g,llc < w(d)/16. Thus by (36),
sign{ f(x}) — g,(x})} =sign f(x*) (i=0,N). Using (40) we have by the
characterization theorem that g, € Y ,(f);. But (38) yields

1 1
Gl > 350~ 1Pl > 5 @(0): (41)

hence (37) is verified.
The proof of Theorem 2 is complete.

Remark 4. Evidently, by a simple modification we can make / analytic
and still obtain in (37) a lower bound ¢d. Thus further improvement of the
smoothness of function does not improve in general the rate of convergence.
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