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1. INTRODUCTION

Let L II 0, II be the space of real-valued Lebesgue integrable functions on
10,1] with norm 11/III=nl/(x)ldx; qO,llcLIIO,11 the subspace of
continuous functions; Un C C[O, 11 an n-dimensional Haar subspace.

By the classical theorem of Jackson [31, for any /E qo, 11 there exists a
unique polynomial Pn(f) E Un such that

(I)

In what follows, Pn(f) will always denote the best L I-approximation to
/E qo, II.

The usual approach to the L j-approximation problem consists in replacing
in (I) the Lj-norm by a discrete LI-norm.

Let 0 = X o <XI < ... <Xv < x s • I = I be a discrete set of points on [0. II;
.1xi = Xi + I - Xi' x/ = (Xi + Xi, 1)/2, i = 0, N (here and throughout the paper
we use the abbreviation n, m = j n. n + I,.... m - 1. m f), 6 = max o i \ .1xi •

Then we can define the discrete L I-norm by

\

II/III b = \' I/(xn .1x i
i 0

(2)

and look for solutions of the L j-approximation problem for this (semi )norm:

(3 )

The best discrete Lj-approximation Pn(f)b is not unique in general. We shall
denote by Yn(f)8 the set of polynomials Pn(f)b satisfying (3). A detailed
discussion of best discrete L I-approximation can be found in Rice 181 and
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RivIin [91. In [9] it is shown that the solution of (3) can be obtained as a
solution of a linear programming problem.

It is natural to expect that for IE qo, 11 all Pn(f)5 tend to Pn(f) as
6 -> 0, i.e.,

(6 -> 0),

where II· lie is the supremum norm. This result was first proved by Motzkin
and Walsh 16]. (It also follows from a general theorem of Kripke [41.)

In the present paper we shall be interested in the rate of convergence of
Pn(f)o to Pn(f) as 6 -> 0. This problem was attacked by Usow I101. Set

Liplf a = {IE cia, 11: wf(h) <. Mh" f, where wf(h) = SUPlx,_x,1 h l/(x l ) ~

1(."'2)1; M> 0, 0< a <.1; and let {rpif7-1 be a basis in Un' Usow [IOj has
shown that if I and rp i (1 <. i <. n) belong to Li PM 1 and the set of zeros of
I ~ pn(f) is of measure zero and contains at least n isolated points. then

(4 )

where the constant in 0 depends only on I and Un'
The question of sharpness of the estimation (4) remained open.
Our principal result is that for a wide class of functions

(5)

and this rate of convergence is the best possible in general. Evidently, (5) is a
strong improvement of (4). (It is interesting to observe that the rate of
convergence in discretization of Cebysev approximation is also w r(6) (see
II,p.92J).) .

2. NEW RESULTS

In what follows jrpil7 I will always be a basis in Un and we assume that
rpl == I and rpi E Lipw 1 (2 <. i <. n) for some M* > 0.

We start with a generalization of Usow's theorem.

THEOREM I. IfIE Lipl1 a and 0< 6 < cl(a, M, Un)' then

where the constants c;(a, M, Un) (j = I, 2) depend only on a, M and UII •
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Theorem I is a generalization of Usow's result because it does not impose
any restriction on the set of zeros of f - Pn(f) and estimation (6) is uniform
on the class of functions LipM a. But from the point of view of the rate of
convergence it does not improve (4), because the proof of Theorem I goes
essentially along the same lines as that of (4 ).

Our main result is the following

THEOREM 2. Let fE qo, II and lfJi (I ~ i ~ n) be twice continuously
differentiable. If f - Pn(f) has a finite number of zeros and 6 is small
enough. then

( 7)

where the constant c1(J, U,J depends only on f and Un' Moreover estimation
(7) cannot be improved in general.

Remark I. The condition fE LipII a is not essential in Theorem 1. An
estimation for the rate of convergence also can be given in case fE qo, I I.
But in the general case, the order of convergence cannot be obtained
explicitly; it will depend on WI'

Remark 2. In general the discrete L I-norm of f can be defined by
I.:i' () l.fi~;)I Llx i , where ~i E Ixi . Xi I I) are arbitrary fixed points. In particular
Usow considered the case ~i = Xi but his proof still goes for any ~i'

Theorem I remains also true when ~i are arbitrary, but in the proof of
Theorem 2 the choice of ~i to be the middle point of the interval IXi' Xi t II is
essential.

Remark 3. The proof of Theorem I is based on a standard method.
applying a strong unicity type result. This method was used by Cheney ([I.

p. 92[) in the case of Cebysev approximation. by Peetre [71 for L r
approximation (I < P ~ 00) and by Usow [10 I for L I-approximation. In
contrast with L I-approximation. this standard method gives sharp
estimations in discretization of Cebysev approximation. The proof of
Theorem 2 which gives already the best possible estimation for the rate of
convergence of discrete L I-approximation is based on more delicate
considerations connected with specific features of approximation in L I-norm.

3. PROOF OF THEOREM I

We shall need some simple propositions. In what follows ci (· .. ) will
denote constants depending only on quantities specified in the brackets.
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PROPOSITION 1. For any q" E V" and °< h ~ 1

343

(8)wqn(h) ~ c4(V,,) Ilq"ll, h,

where we may assume that c4(V,,); 1.

Proof Using that !fJ; E Lipw 1 (l ~ i ~ n) and the equivalence of norms
in finite-dimensional spaces we have for q" =,[7 1 ai!fJi

" "
wqn(h)~ ~ lailw")/h)~M*h \.' lail~c4(V")llq,,ll,h.
iIi 1

PROPOSITION 2. For any q" E V" and °< 0 ~ l/c4(V,,)

Ilq"ll, ~ 21Iq"llu'
Ilq"llu ~ ~ Ilq"II,·

Proof Obviously, for any fE ClO, II

Illfll, -llfllul ~ wrCO/ 2).

Hence and by (8), we have

This immediately implies (9) and (10).

(9)

( 10)

( 11 )

PROPOSITION 3. Let fE C[O, 11, P,,(f)b E Y,,(f)b' where 0< 0 ~
l/c4(V,,). Then for any °< h ~ I

wpn({)(h) ~ c,(U,,) wrCh), (12)

wpn(fI,,(h)~C6(V,,)wih). (13)

Proof Set lex) =f(x) ~ f(O). Evidently p,,(]) = p,,(f) ~ f(O), P,,(f)b ~
f(O) = P"(])3 E Y,,(])b' Theref~re by (8), we h~ve wpn(f)(h) == wPn<ll(h) ~
c4(V,,) IIp,,(f)lll h ~ 2c4(U,,) Ilflllh ~ 2c4(V,,) II file h ~ 2c4(V,,) wtC 1)h ~

4c4(U,,) wj(h) (here we used the inequality wf (l)h ~ 2wf (h)). Further by (8),
(9) and (11), we obtain

wpn(f)"(h) == Wpni!)b(h) ~ c4(U,,) II p"(])<lII, h

~ 2c4(V,,) IIp,,(]MI.b h ~ 4c4(U,,) 11]111.0 h

~ 4cAU,,)(IIJII, + w7(0)) h

~8C4(U,,)wtCl)h~ 16c4(U,,)wj(h).

040/]3/4-5
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PROPOSITION 4. Lei fE ClO, II, Pn(f),\ E Yn(f),\' where 0< 0 ~
l/c4 (Un ). Then

( 14)

Proof Equation (II) and Proposition 3 imply

ilf -- Pn(f),\ III ~ Ilf - pn(f),\ ill.,\ + wAO) + wl'"lflJO)

~ III - Pn(f)11 I.<\ + (I + c,,(U,J) w1(0)

~ III - Pn(f)111 + wl(o) + w{),,1I1(6) + (I + co(Un)) w/(())

~llf-Pn(f)111+c7 (U n )wr(0).

The following strong unicity type theorem is proved in 15. Theorem 21:
Let I* E ClO, II, Pn(f*) =:= °and wr·(h) ~ w(h), where w(h) is a fixed

modulus of continuity. Then

suplllqnlll: qn E Un' 1:/*-- qn I ~ !If*111 + 2/:1

~ cx(w, Un) 1,)1:). (15)

where 1
0
,(1:) is the inverse of 5,,,(1:) = II I(f! (I: - w(/) dl and I: >°is an

arbitrary real for which 1w(e) is defined, i.e.. 0 < /: ~ J:I (w( I ) - w(l)) dl.

For IE Lipl/ ex set I* =f- pn(f): qn = Pn(f),\ - Pn(f). where Pn(f),\ E
Yn(f),\ and 0< 0 < l/c4 (Un). Then Pn(f*)=:=O and by (12). wl(h)~

c9 (M, Uf/) h". Setting w(h) = c9 (M. UJ h" we obtain '",(0;) =

c lll (a,M. Un)I:"cI" , II. Further by (14)

~MC7(Un)On,

Hence and by (IS) fJr any 0< 6 < cjj(a,M, Un)

Pn(f) -- Pn(f),\ lie ~ c 12( Un) Ii Pn(f) - Pn(f),\ I! I

= C1Z(L,',,) Ilqn 1.:( cl.~(a, M, L/,J bn~ (a I I)

Theorem 1 is proved.

4. PROOF OF THEOREM 2

We start with verifying the upper bound of Theorem 2,
Evidently we may assume that Pn(f) =:= 0 and I has finite number of zeros.

Let °< I j ... < 1m < I be all the zeros of I inside (0. I). Set 10 c=. O.
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(k= I,m+ I),

t",. J = I (to and tm + I may also be zeros of f) and t = minos;"", (t i , I - tJ.
Throughout the rest of the proof we assume that 6 < min {t/ 4, 1/cJ VII n.

For any k = 0, m +1 set

. ° ._ \'.. / 6 I
10 =; Ik - max I}' .X j ~ {k - 2 \

_ . \" . <5 I
Sk - mIn IJ. Xi ';) tk -r 2 \

Evidently,

(5 36
2~tk-X'k < 2

hence X'k <x," I (k = 0, m) and

(k = 0, m); Sm+ 1= N + I.

(k = I, m + I),

(k=O,m):

(k = 0, m + I).

(16 )

(17)

Further by jtd;:oJ and {xdiY+OI we define a linear operator D acting from
ClO, II into L 10, II· For g E ClO, II

D(g)=g.

= g(x,*),

xE IX'k,x'kl(k'=,O,m+ I),

X E lx" xi + J I (i = 0, N; i * ~s~--=--1; k = 0, n;-+T).
(18 )

Obviously for any x E 10, 11, we have

signf= sign D(f).

We shall establish some properties of D.

( 19)

PROPOSITION 5. Let g E CI 0, I), I ~ k ~ m. Then for any x E 10, II

(20)

Proof Assume, e.g., that x';) t,. Then for x E Itk' X
Sk

I, D(g. x) = g(x):
thus (20) is evident. Further if x';) X'k then x E lx" x,. I I for some rand
therefore D( g, x) is equal to g(x) or g(x,*). Thus by (16)

I D(g, x) - g(t,)1 ~! g(x) ~ g(t,)1 + ID( g, x) - g(x)1

~ wK(x - (h) + w.(6/2)

~ wR(x -lh) + WJX'I -- (,) ~ 2w.(x - {,J
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For x ~ tk the proof can be obtained analogously.

LEMMA 1. For any qnE Un' we have

(21 )

Proof By our assumption Pn(f) -=' a and f has a finite number of zeros.
Then, by a well-known theorem and (19), for any qn E Un

.1 .1

I qn sign D(f) dx = I qn sign f dx = O.
·0 ·0

Further again using (19) we have

.) m +-... 1 "X Sk

I D(qn)signD(f)dx= 2.- I qnsignfdx
"0 k-O 'Xik

m i/..+l---I

+ '\'" '\' (*)A_ ik qn Xi LJX i ,

k 0 i 5,

\.1(: D(qn) sign D(f) dx I

1.1(: D(qn) sign D(f) dx - .1
0

1

qn sign D(f) dx I

I

rn ik.i 1 1 m ik I I
'Xi I

'\'
Yk

'\' qn(X;*)JX j -
'\' "/k '\' I qn dx I

k 0 j- SA k 0 j 1,' ~ . x,.

rn i k. I I I .x, I'\' '\' * _" I

~ k 0 /'__-:', Iqn(X j ) JXj .1" qn dx ".

Hence, using the representation

. \

qn(X) = qn(X;*) + (x - x;*) q:,(X;*) + I (x - t) q~(t) dt,
. x;

we obtain

I ql1(x;*) JX j -C:' Iql1 dx I ~ \1,',' I.e (x - t) q::(t) dt dx I

~Jxjliq~llc(F.

(22)

(23)

(24)
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Set T= max,,,;i,,;n Ilipi'llc- Then

This together with (23) and (24) imply (21).

COROLLARY 1. For any qn E Un' we have

347

IID(f) - D(qn)ll, -IID(f)IIl

>21 ID(!) - D(qn)1 dx - C'6(Un)llqnllc 62
, (25)

• A U.q n)

where A(j, qn) = ~x E 10, 1]: 0< D(f) < D(qn) or D(qn) < D(f) < Of·

Proof By (21) we immediately obtain

II D(f) - D(q,JlI, ~ II D(f)lll
.1

= I (D(f) - D(qn))jsign(D(f) - D(qn)) - sign D(fll dx
. 0

.1

- I D(qn) sign D(f) dx
·0

>21 ID(f) - D(qn)1 dx - CI6 (Un) Ilqnllc 62
•

. HI·qn)

LEMMA 2. For any g E qo, II,

Proof By simple calculations we get

III D( g)11, - II gil i,b I

= 12+'~ <:k Igl dx + k~'O ik>:k' 1g(xnl L1xi~ i~~1 Ig(xnl L1xiI

= I rn,,+" \,1 fiJI (I gl-I g(.x";*)I) dx I
k = 0 1 If.: Xi

Hence by (17) we obtain (26).

(26)
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COROLLARY 2. Let Pn(f)h E Yn(fh. Then

i. ID(f) - D(Pn(f)b)1 dx ~ cIS(J, Vn) 6wr(6). (27)
. 1I/.P n(flh l

Proof By (9) and (II).

II Pn(f)b lie ~ CI9 (V,,) II P,,(f)h III ~ 2C 19 (V,,) II P,,(f)h Ii u

~ 4C'9(Vn ) Ilfll u
~ 4c 19(V,,)(llfll, + wr(l)) = c20(f V,,).

Therefore. according to (25). (26) and (13).

I . . ID(f) - D(Pn(f)b)1 dx
..1(/. PnU Ihi

~111ID(f)-D(p,,(f)h)li,--IID(f)II,f +C 2I U; Vn )(j2

= 1111D(f- Pn(f)h)ll, - IID(f)II, f + C 21 (f V,,) (j2

~ 1{Ilf- Pn(f)b ilu -llfll u f + C I7 (f) 6wr((j)

+ 1C I7(f) (jwPnUlh(6) + c2 ,(f V,,) 62

~ c22 (f. Vn) 6wr((j)·

Thus estimation (27) is proved.
Now we are able to prove the upper bound of Theorem 2. We may assume

that wih) is strictly increasing for any 0 < h ~ L because wAh) ~
wAh)+h~11+2/wr(l)f wr(h). where wr(h)+h is already a strictly
increasing modulus of continuity. Let {ft f; 1 E (0. I) be the points of
change of sign of f Evidently I ~ n. (Otherwise. by a well-known theorem.
there exists a q: E V n \0 with sign q: = signf which contradicts (22).)

Therefore for any qn E Vn' we have

(28)

Set tt = o. t;*+ I = I. F = mino<f"{ max'i';'H,ti. I If(x)l. F> O. Assume that 6
is so small that

sup II Pn(f)hlle ~ minI I. Fr·
Pn(flh E l'nUlh

(29)

Take an arbitrary Pn(f)h E Yn(f)h \0. According to (28) there exists a
~ E (0. I) such that f changes its sign at ~ (thus f(~) = 0) and II Pn(f)jc (.
c2J (V n ) IPn(f ~)h:'
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Without loss of generality we may assume that PnU: ~)b > 0 and f(x) > 0
while x E (~, 17), where 17 is the next point where f changes its sign. By (20)

o< D(f) < 2wf (x - ~),

Analogously by (20), (8) and (29), we obtain

x E (~, 17). (30)

D( Pn(f)8) ;? Pn(f ~)b ~ 2wp "U),(x - ~)

1
;? c

2
,(U

Il
) Ilpll(f)blic - 2c4(UIl ) Ilpll(fLIII (x-~)

x E (,;, 17). (3 1)

It follows from (29) that there exists i- E (~, 17) such that

Further, (32) implies that

where h is defined as solution of the equation

By (30), (31) and (32) we have for x E (~, .x)

(34)

D(f) > O.

Hence applying (27) and (33) we have

.X

cIs(f UIl )6wf (6);? 1 jD(PIl(f)8)--D(f)[ dx
'f,

..x:-

;? 21 jwj(X ~~) - wj(x ~~)f dx
-f,

,(UI
I
( 2UJt{h»

;? 21 {2wf (h) ~ w/x) f dx
- 0

.il

;? 21 {2wAh) - wf(x)f dx;? 2wAh) h.
·0
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This immediately implies that h ~ C 26(f, Un)J. Finally, substituting this
estimation in (34) we have

The upper bound of Theorem 2 is proved.
We shall give now a counterexample showing that estimation (7) is in

general the best possible.
Consider the system of functions j<Oi};' I spanning V'I' By a theorem

proved in 12/ there exist points 0 = Yo <)'1 < ... < y" < )'n . I = 1 such that
for any 1~j~ n

tI 'Yit 1

\' (_I)i I <o;(x)dx=O.
I' 0 • Y,

(35)

Let 0<6<mino~i~n(Yi+I-)'J/2 and set ai=Yi~6/4; bi=Yi+36/4
(i = T,I1). Evidently, we can choose the finite point set 0 = X o <XI < ... <
x.., < x.., \ I = 1 in such way that (XdjV+OI (J (ai' b;) = 0 (i = ~n) and
maxO~i"N Llxi = J. Let w be an arbitrary modulus of continuity and define I
by

I(x) = (_I)i w(x - Yi)/2,

= (_l)i W(Yi+1 -x)/2,

= w( Y I - x)/2.

= (_I)" w(x - )',,)/2.

Then C 28 W(h) ~ wf(h) ~ w(h),

lYi+Yi,J I' -1~I~')x E ~ 2 ·)'i. I (I = . n - .

xE IYo,)',I,

x E I)'n' Yn + I I·

61 1I/(xn! ;:, w (4) 2;:' 16w(6).

and by (35), Pn(f) == O. Let us prove that

[=0. N. (36)

Take an arbitrary Pn(f)b E Y,,(f)b' We may assume that

(37)

(38 )
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(In the opposite case there is nothing to prove.) By the characterization
theorem of best discrete L I-approximation (see 19, p. 74 j), for any q" E U"

I
"v, qn(xnL1x j sign{f(xn-Pn(f,xns} I ~ \' Iqn(x;*)lL1x j •

I 0 lEI
(39)

where 1 = U:f(x;*) = Pn(f, x;*)s}. But by (36) and (38), 1 is empty and
sign {f(x;*) - Pn(f, x;*)sf = signf(x;*) (i = 0, N). Thus it follows from (39).
that for any qn E Un

\

'" qn(x;*) L1x j signf(x;*) = 0.
i 0

(40)

Set ifn = Pn(fh +w(b)j32. Then by (38), Ilifnllc <w(b)jI6. Thus by (36),
sign{f(x;*)-ifn(xt)}=signf(x;*) (i=O,N). Using (40) we have by the
characterization theorem that ifn E Yn(f)8' But (38) yields

I I
II ifn lie',) 32 w(b) -II Pn(f)81Ie > 64 w(b); (41 )

hence (37) is verified.
The proof of Theorem 2 is complete.

Remark 4. Evidently, by a simple modification we can make f analytic
and still obtain in (37) a lower bound cb. Thus further improvement of the
smoothness of function does not improve in general the rate of convergence.
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